Hawaii Framework Reference
Documentation

Marcel Overdijk

Version 2.0.0.M20

Table of Contents

1. Introduction to Hawaii
1.1. Spring Boot
2. Getting Started with Hawaii
3. Hawaii Features
3.1. Environments
3.2. Configuration properties
3.3. Logging
3.3.1. Kibana
3.3.2. Kibana cleanup
3.3.3. Request duration
3.3.4. Request id
3.3.5. Transaction id
3.3.6. User details
3.3.7. Request/response
3.4. Hawaii Time
3.5. Validation
3.6. Web
3.6.1. Global Exception Handler
3.6.2. REST Representations
4. Hawaii Starters
4.1. hawaii-starter
4.2. hawaii-starter-logging
4.2.1. How to use
4.3. hawaii-starter-rest
4.4. hawaii-starter-test
4.5. hawaii-starter-async
4.5.1. Executor configuration
4.5.2. Task timeout
4.5.3. Usage
4.5.4. Components
4.5.5. Processing
5. Deployment
Appendices
Appendix A: Hawaii application properties

(<RS2 N C) B O 5 R @ 5 R L L s ~ N~ N O B A T W)

g e Yy
© © 00 O U bR W W W W N R R RO O O

E kalia i ka nu’u. Strive to reach the highest.

Chapter 1. Introduction to Hawaii

The Hawaii Framework is a Java framework for developing Spring based applications.

It provides production-ready features and integrations based best practices and experience to boost
projects.

The Hawaii Framework is developed internally at QNH and is used in projects for medium and
large enterprise customers.

1.1. Spring Boot

Combining Spring Boot and the Hawaii production-ready features and auto configuration brings
even more power and simplicity to developers, without sacrificing flexibility.

The Hawaii Framework also provides various Spring Boot Starters to automatically include the
needed dependencies and trigger the auto configuration of the Hawaii production-ready features.

But it is important to mention that most of the Hawaii features can also used without using Spring
Boot. In that case the desired features need to be configured manually by defining the appropriate
Spring beans inside the application’s context.

https://qnh.eu
http://projects.spring.io/spring-boot

Chapter 2. Getting Started with Hawaii

TODO.

Chapter 3. Hawaii Features

TODO.

3.1. Environments

TODO.

3.2. Configuration properties

TODO.

3.3. Logging

The Hawaii logging feature provides a number of filter beans which add information that can log
information about requests. The Hawaii logging is only usable in a servlet environment, because all
filters use HttpServletRequest and HttpServletResponse to obtain information.

The main purpose of Hawaii logging is to write structured information into log lines, in such a way
that it can be parsed by elastic search (Kibana). A specialized encoder is included to write out the
log lines, as well as a bunch of filters that gather and, in some cases, create information to be
included in each message. Hawaii logging currently only contains a logback-based encoder, so
Hawaii logging is only usable if you use logback as your logging implementation.

The next sections describe the individual filters contained in the Hawaii logging module. For more
information on disabling and configuring individual filters, please refer to the Hawaii logging
starter.

3.3.1. Kibana

The Kibana log filter gathers request data such as request method, uri and client ip address and
stores it so it can be added to subsequent log messages.

3.3.2. Kibana cleanup

The Kibana cleanup filter empties all Kibana-specific data after the rest of the filter chain has been
processed. It is intended to be used early in the chain, such that the cleanup happens last.

3.3.3. Request duration

This filter determines the duration of the request in milliseconds. It add the duration to the Kibana
fields and logs it.

3.3.4. Request id

This filter generates a new request id, adds it to the Kibana fields and also writes it as a header on
the response.

3.3.5. Transaction id

This filter reads an incoming transaction id from a request header, or generates a new one. The
transaction id is written to a response header and added to the Kibana fields. The ability to read an
incoming transaction id provides the ability to have multiple requests, spanning multiple systems
within the same transaction.

3.3.6. User detalils

This filter retrieves the authenticated principal from the security context and stores the user name
in the Kibana fields so that it gets included in each log message. This filter is only instantiated if
Spring security is found on the class path.

3.3.7. Request/response

This filter logs the content type, size, headers and body of incoming requests, as well as the
response status, headers and body. Optionally, the filter can log the response to a file if it exceeds a
certain threshold size.

3.4. Hawaii Time

HawaiiTime is not merely a convenient wrapper to instantiate new java.time date and time objects. It
provides an application wide java.time.(Clock reference which is particular useful for unit testing.

It is similar to Joda’s DateTimeUtils which also allows setting a fixed current time. However it is
important to note that Joda’s DateTimeUtils uses a static variable to store the current time.
HawaiiTime does not take this approach. Instead the HawaiiTime bean needs to be injected in any class
that needs to instantiate new date and time objects. This approach is more flexible and e.g. has the
benefit that unit tests can be run in parallel. See example usage below.

public class MyClass {
private HawaiiTime hawaiiTime;

public MyClass(HawaiiTime hawaiiTime) { @
this.hawaiiTime = hawaiiTime;

}

public void doSomethingWithDate() {
ZonedDateTime dateTime = this.hawaiiTime.zonedDateTime(); @
/] ...

public class MyClassTests {

@Test

public void testDoSomethingWithDate() {
long millis = System.currentTimeMillis();
HawaiiTime hawaiiTime = new HawaiiTime();
hawaiiTime.useFixedClock(millis); ®
MyClass myClass = new MyClass(hawaiiTime);
myClass.doSomethingWithDate();
/] ...

@ Inject the HawaiiTime bean.
@ Use the injected HawaiiTime bean to instantiate new date and time objects.

® In unit tests a fixed clock can be used to manipulate and predict the exact current time.

Another benefit of using HawaiiTime is that a fixed time can be used in a running application to test
how it behaves on a given date or time.

' Third-party libraries being used by the application do not use HawaiiTime and
— probably instantiate date and time objects based on the System time.

Hawaii uses UTC as default timezone but this can be changed by setting the hawaii.time.timezone
configuration property. The provided value will be parsed by java.time.ZoneId#of(String zoneld)
and supports different timezone formats like UTC, Europe/Amsterdam and GMT+1.

The creation of the HawaiiTime bean can also be disabled by setting hawaii.time.enabled to false.

3.5. Validation

Hawaii’s validation mechanism can be used to validate any object. It basically validates values,
collects validation errors and stores them in a validation result. These validation errors are simple

field / error code combinations.

Hawaii’s Validator is inspired on Spring’s org.springframework.validation.Validator mechanism.
However Hawaii’s validator mechanism uses it’s own ValidationResult instead of Spring’s
org.springframework.validation.Errors. The main difference is that Hawaii’s ValidationResult does
not bind directly the object being validated. This also gives the possibility to add errors for specific
keys that are not direct properties of the object being validated.

Hawaii’s validation mechanism also provides additional sugar like Hamcrest matcher support to
write human readable validating code, the capability to validate and automatically throw a
ValidationException in case of errors etc.

Like Spring’s validation mechanism the Hawaii validation mechanism also supports the notion of
nested error paths which also stimulates to re-use validators.

Let’s take an example. Imagine a Customer object with common name, e-mail, and address fields. A
validation result could for example contain the following field / error code combinations:

first_name = required ®

last_name = max_length_exceeded

email = invalid

addresses = primary_address_required @
addresses[0].type = invalid ®
addresses[0].street_name = max_length_exceeded
addresses[@].postal_code = invalid
addresses[0].city = max_length_exceeded
addresses[@].country_code = required

@ The field first_name has an required error code.

@ The field adresses (an array in this case) has primary_address_required error code.

® The field type of the first address in the addresses array has a invalid error code.

The example demonstrates simple field errors (like first_name) but also storing errors for arrays

and nested paths (addresses[0].type). In theory a field could also have multiple error codes if
needed.

Implementors should typically only implement the
org.hawaiiframework.sample.validator.Validator#ivalidate(Object, ValidationResult) method as the
other methods in the interface are already implemented using the interface’s default methods.

A generic EmailValidator would look like:

import org.hawaiiframework.validation.ValidationResult;
import org.hawaiiframework.validation.Validator;
import org.springframework.stereotype.Component;

import java.util.regex.Pattern;

@Component
public class EmailValidator implements Validator<String> { @

public static final String EMAIL_PATTERN = "A[_A-7Za-z0-9-\\+]+(\\.[_A-Za-z0-9-
1+)*@[A-Za-20-9-]+(\\.[A-Za-z0-9]+)*(\\.[A-Za-2]{2,})$";

private Pattern pattern;

public EmailValidator() {
this.pattern = Pattern.compile(EMAIL_PATTERN);

}

@0verride
public void validate(String email, ValidationResult validationResult) { @
if (!pattern.matcher(email).matches()) {
validationResult.rejectValue("invalid"); ®

}

@ Implement the Validator (in this case a String).
@ Override the Validator#validate(Object, ValidationResult) method.
® In case the e-mail is invalid, reject the value with error code invalid and store it in the

validation result.

The CustomerValidator would look like:

import org.apache.commons.lang3.StringUtils;

import org.hawaiiframework.sample.validator.EmailValidator;
import org.hawaiiframework.validation.ValidationResult;
import org.hawaiiframework.validation.Validator;

import org.springframework.stereotype.Component;

import java.util.list;
import static org.hamcrest.Matchers.greaterThan;

@Component
public class CustomerInputValidator implements Validator<CustomerInput> { @

private final EmailValidator emailValidator;
private final AddressValidator addressValidator;

public CustomerInputValidator(final EmailValidator emailValidator,
final AddressValidator addressValidator) { @
this.emailValidator = emailValidator;
this.addressValidator = addressValidator;

}

@0verride
public void validate(CustomerInput customer, ValidationResult validationResult) {

// first name validation
String firstName = customer.getFirstName();
if (StringUtils.isBlank(firstName)) {
validationResult.rejectValue("first_name", "required");
} else {
validationResult.rejectValueIf(firstName.length(), greaterThan(25),
"first_name",
"max_length_exceeded");

}

// last name validation
String lastName = customer.getLastName();
if (StringUtils.isBlank(lastName)) {
validationResult.rejectValue("last_name", "required");
} else {
validationResult.rejectValueIf(lastName.length(), greaterThan(25),
"last_name",
"max_length_exceeded");

}

// e-mail validation

String email = customer.getEmail();

if (StringUtils.isBlank(email)) {
validationResult.rejectValue("email", "required");

} else if (email.length() > 100) {
validationResult.rejectValue("email", "max_length_exceeded");

} else {
validationResult.pushNestedPath("email");
emailValidator.validate(email, validationResult);
validationResult.popNestedPath();

}

// adresses validation
List<Address> addresses = customer.getAddresses();
if (addresses == null || addresses.size() == 0) {
validationResult.rejectValue("addresses", "required");
} else {
// addresses array validations
long primaries = addresses.stream()
.filter(address -> address.getType() == AddressType.PRIMARY)
.count();

if (primaries == 0) {
validationResult.rejectValue("addresses", "primary_address_required");
} else if (primaries > 1) {
validationResult.rejectValue("addresses",
"only_1_primary_address_allowed");

}

if (addresses.size() > 3) {
validationResult.rejectValue("addresses",
"max_array_length_exceeded");

}

// address validations

for (int i = @; 1 < addresses.size(); i++) {
validationResult.pushNestedPath("addresses", i);
addressValidator.validate(addresses.get(i), validationResult);
validationResult.popNestedPath();

@ Implement the Validator (in this case a Customer).
@ Inject other validators (EmailValidator, AddressValidator) to be re-used.

® Override the Validator#tvalidate(Object, ValidationResult) method.

3.6. Web

3.6.1. Global Exception Handler

TODO.

3.6.2. REST Representations

TODO.

Input Converter

TODO.

Resource Assembler

TODO.

10

Chapter 4. Hawalii Starters

TODO.

4.1. hawaii-starter

TODO.

4.2. hawaii-starter-logging

The hawaii-starter-logging delivers a fully configured set of filters that are added to the filter chain
in the configured order. The starter contains a default configuration, which can be overridden by
adding properties to your configuration. The default configuration consists of the filters listed in the
table below.

Filters with a negative order are added to the filter chain before any filters that modify or wrap the
request and/or response. The UserDetailsFilter depends on Spring Security (it logs the authenticated
Principal) and therefor has a higher order.

Table 1. Default filter configuration
Filter Enabled Order Additional properties

kibana-log true -108 * http-header: the header that
contains the client ip address.
Defaults to X-Hawaii-Frontend-
IP-Address. If no such header is
present, the filter uses the
remote address from the

request.
kibana-log-cleanup true -110 -
request-duration true -109 -
request-id true -106 * http-header: the response

header to which the request id
will be writen. Defaults to X-
Hawaii-Request-Id.

11

Filter Enabled

request-response true
transaction-id: true
user-details true

Order
-105

-107

110

Additional properties

 fallbackToFile: write the

response to a file if its size
exceeds maxLogSize, default
value is true

directory: the directory where
files are written to, defaults to
/tmp

maxLogSize: the maximum log
size to write to the log, see
fallbackToFile, default value is
50k

allowedContentTypes: For
console logging, the allowed
content types, empty means
allow all. Default value:

o application/json
o text/plain

o text/xml

http-header: the request
header name that may contain
an incoming transaction 1id,
and the response header to
which the transaction id is
written. Defaults to X-Hawaii-
Tx-1d".

An example of the default configuration is available in the appendix.

4.2.1. How to use

In order to use Hawaii logging,
KibanalLogEventEncoder, for example:

12

yowll need to define an appender that wuses the

<appender name="kibana" class="ch.qos.logback.core.rolling.RollingFileAppender">
<file>log/idm-kibana.log</file>
<encoder class="org.hawaiiframework.logging.logback.KibanalLogEventEncoder"/>
<rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
<fileNamePattern>${tomcat_logs}/hawaii-idm.log.%d{yyyy-MM-
dd}.gz</fileNamePattern>
<maxHistory>10</maxHistory>
</rollingPolicy>
</appender>

4.3. hawaii-starter-rest

TODO.

4.4. hawaii-starter-test

TODO.

4.5. hawaii-starter-async

The asynchronous request execution in Hawaii is built on top of the scheduling in Spring
Framework, see the Spring documentation for a baseline explanation.

There are two main additions:

* More flexibility in executor configuration

e Task timeout

4.5.1. Executor configuration

The Hawaii async configuration allows the definition of executors. An executor can be viewed as a
thread pool. An executor configuration looks something like this:

executors:

name: default
corePoolSize: 10
keepAliveTime: 60
maxPendingRequests: 60
maxPoolSize: 60

The lowest level of configuration is a task. Tasks are grouped into systems. A system could be some
backend system against which requests are executed, or a database on which queries are executed.
Each request or query represents a task in Hawaii async terminology. System and task
configuration looks like this:

13

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#scheduling-annotation-support

systems:

name: mySystem
defaultExecutor: myExecutor
defaultTimeout: 3

tasks:

method: myTask
executor: mySpecialExecutor
timeout: 1

method: myOtherTask

As can be seen, an executor can be assigned on system level. This will be the default executor for all
the tasks in the system, unless a specific executor is configured for a task, such as myTask in the
example. The same mechanism applies to the timeout settings. It is therefore perfectly legal to
configure a task without any properties. However, it remains necessary to define the task in the
configuration, otherwise it can’t be used, i.e. every task must be defined in the configuration.

Finally, there are some global properties:

defaultExecutor: default
defaultTimeout: 10
asyncTimeoutExecutorPoolSize: 10

These define the default executor and timeout. These defaults will be used if no executor or timeout
is defined on either task or system.

The asyncTimeoutExecutorPoolSize property defines the number of threads that are used to run
timeout tasks. See task timeout.

4.5.2. Task timeout

Another addition is automatically timing out tasks. For each task that is executed, the Hawaii async
framework enqueues a cancellation task into a separate executor. If the timeout moment arrives,
the timeout task is executed and will attempt to abort the actual task being executed. The actual
task will remove the timeout task when it finishes, so if a task runs within its time limit, the timeout
task will never be run.

4.5.3. Usage

In practice, using the Hawaii asynchronous framework is not that different from using Spring’s:
asynchronous execution must be enabled with @EnableAsync and methods that are to be executed
asynchronously must be annotated with the @Async annotation, and they must have a Future typed
return value.

Additionally, an asynchronous configuration must be defined in the file identified by the

14

hawaii.async.configuration property, which is set to ./config/async-config.yml by default.

The essential difference in usage is that where Spring allows the specification of an executor by
specifying the value of the @Async annotation, the Hawaii additions require specifying the Task
name instead of the executor. The Hawaii async configuration will take care of routing the
execution to the correct Executor.

HTTP

To execute http requests using the Hawaii async framework, youwll need to use the
HawaiiHttpComponentsClientHttpRequestFactory to enable timing out of tasks that run too long.

You can use the LoggingClientHttpRequestInterceptor to log requests and responses made over http.
Note that since this interceptor consumes the response, this will only work if you wrap the
HawaiiHttpComponentsClientHttpRequestFactory in a
org.springframework.http.client.BufferingClientHttpRequestFactory, or take other measures to
make sure the response can be read more than once.

4.5.4. Components

The following diagram shows the various components in the Hawaii async solution:

Executor ThreadPool

5
2®
o invokes
async-config
reads AsyncExecutorConfig creates Executor Thread
Delegate
%JE;%’
4 (fa‘i'i‘es
Async
Delayed
MethodX =] scheduled in Guard
Executor
5
c,é removes
& &
oF
& timeout
3 MethodX Shared Task
As'.rncExecutmnlmercepmr| creates Proxy
A finish
Legend C‘%
e, “,
i ! e
i invokes !
: —_—= aborts
i i
i Hawaii Code !
i i Caller Runnable
i Spring Code :
i i /\
i i
]
i Application Code |
i i
i !

In the diagram, MethodX is the call that must be executed asynchronously, for example service or
repository method. The @Async annotation causes Spring to create a proxy around this method. The

15

proxy locates the executor, which in the Hawaii case is a DelegatingExecutor which will delegate to
the real executor specified for the task. The executor takes the MethodX Runnable and executes it on
an available thread.

Additionally, a delayed (by the configured timeout) task, the MethodX Guard is created and passed to
the Delayed Guard Executor.

Both tasks share the Shared Task Context which allows them to share logging context, and which
also provides access for the guarded task to remove the guard task upon completion, and for the
guard task to abort the guarded task upon activation.

4.5.5. Processing

The sequence below shows the components working together to execute a task.

= Suermons | [Shsdncometiide
H i‘m
| [e
uuuuuuu i
— e
oo
mmmmm
,,,,,,,,,,,) e |
IS
==
Thee o)
iz
,,,,,,,,,
rt&lﬂ ,,,,,,,,,,,,,,,)
. o)
sz
,,,,,,,,,,,,,,,,,,, i
[foso
e
,,,,,,, .
sssssss)
]
‘‘‘‘‘‘ 0 i
| 1
-
- 3
[oee] [oremrare | [y | [compmerns | [| [P [Rl e e T T T T] e «o Sy

The sequence below shows the flow when a task times out.

16

GuargTaskexecutor | [SharedTaskContextolder

|
T
i s ookngUp spci. executrs o acie sk
Each ask must '
repoget user
ndsecuor(” repoget user)
oew Calable
.
| SharedTack
{AborabieTas
)
{ TimeouG
el guas
guard >
a)
femove
enguase aboriabieTaskRunnas
CompletabieFure_| new
eFuure |
readn
oo
oet0
sevseny
sharedontet = gei()
nen.) [ponsategy
o ke a
imeout
[
emoveTask()
Since e AbortableTasKRunable §
i does o
avorask()
ine()
p—
—
emovey
=
s reont
mvs)
Exceptin
Excepion
[Roarsangy | [Pg] Er Wl e e I I I I ez garizes

Service Completatieruure | [Repostory

Chapter 5. Deployment

TODO.

18

Appendices

Appendix A: Hawaii application properties

Various properties can be specified inside your application.properties/application.yml file or as
command line switches. This section provides a list of available Hawaii application properties.

HAWAII PROPERTIES

#

This sample file is provided as a guideline. Do NOT copy it in its
entirety to your own application. AAA

HAWAII SPRING BOOT DEFAULTS
spring:
jackson:
date-format: com.fasterxml.jackson.databind.util.IS08601DateFormat
property-naming-strategy: CAMEL_CASE_TO_LOWER_CASE_WITH_UNDERSCORES
serialization:
indent-output: false
write-dates-as-timestamps: false
write-date-timestamps-as-nanoseconds: false
logging:
file: log/hawaii.log
level:
org.hawaiiframework: INFO
org.springframework: INFO

HAWAII TIME
hawaii:
time:
enabled: true # Enable creation of the ‘HawaiiTime‘ bean.
timezone: UTC # The timezone to use like ‘UTC', ‘Europe/Amsterdam’ or ‘GMT+1".
async:
configuration: ./config/async-config.yml # location of the Hawaii async
configuration file
logging:
filters:
kibana-log:
enabled: true
order: -108
http-header: X-Hawaii-Frontend-IP-Address
kibana-log-cleanup:
enabled: true
order: -110
request-duration:
enabled: true

19

order: -109

request-id:

enabled: true
order: -106
http-header: X-Hawaii-Request-Id

request-response:

enabled: true
order: -105
fallbackToFile: true
directory: /tmp
maxLogSize: 50k
For console logging, the allowed content types, empty means allow all.
allowedContentTypes:
- application/json
- text/plain
- text/xml

transaction-id:

enabled: true
order: -107
http-header: X-Hawaii-Tx-Id

user-details:

spring:

profiles:

jackson:

enabled: true
order: 110

dev

serialization.indent-output: true

logging:
level:

org.hawaiiframework: DEBUG

spring:

profiles:

spring:

profiles:

20

test

prod

	Hawaii Framework Reference Documentation
	Table of Contents
	Chapter 1. Introduction to Hawaii
	1.1. Spring Boot

	Chapter 2. Getting Started with Hawaii
	Chapter 3. Hawaii Features
	3.1. Environments
	3.2. Configuration properties
	3.3. Logging
	3.3.1. Kibana
	3.3.2. Kibana cleanup
	3.3.3. Request duration
	3.3.4. Request id
	3.3.5. Transaction id
	3.3.6. User details
	3.3.7. Request/response

	3.4. Hawaii Time
	3.5. Validation
	3.6. Web
	3.6.1. Global Exception Handler
	3.6.2. REST Representations

	Chapter 4. Hawaii Starters
	4.1. hawaii-starter
	4.2. hawaii-starter-logging
	4.2.1. How to use

	4.3. hawaii-starter-rest
	4.4. hawaii-starter-test
	4.5. hawaii-starter-async
	4.5.1. Executor configuration
	4.5.2. Task timeout
	4.5.3. Usage
	4.5.4. Components
	4.5.5. Processing

	Chapter 5. Deployment
	Appendices
	Appendix A: Hawaii application properties

