Hawaii Framework Reference
Documentation

Marcel Overdijk

Version 2.0.0.M7

Table of Contents

1. Introduction to Hawaii

1.1. Spring Boot
2. Getting Started with Hawaii
3. Hawaii Features

3.1. Environments

3.2. Configuration properties

3.3. Logging

3.4. Hawaii Time

3.5. Validation

3.6. Web
3.6.1. Global Exception Handler
3.6.2. REST Representations

4. Hawaii Starters

4.1. hawaii-starter
4.2. hawaii-starter-rest
4.3. hawaii-starter-test
4.4. hawaii-starter-async
4.4.1. Executor configuration
4.4.2. Task timeout
4.4.3. Usage
4.4.4. Components
4.4.5. Processing

5. Deployment
Appendices

Appendix A: Hawaii application properties

© © O U1 P B R R LW NN

N O N Y Y
O O Ul W N R, kO O O O O O

E kalia i ka nu’u. Strive to reach the highest.

Chapter 1. Introduction to Hawaii

The Hawaii Framework is a Java framework for developing Spring based applications.

It provides production-ready features and integrations based best practices and experience to boost
projects.

The Hawaii Framework is developed internally at QNH and is used in projects for medium and
large enterprise customers.

1.1. Spring Boot

Combining Spring Boot and the Hawaii production-ready features and auto configuration brings
even more power and simplicity to developers, without sacrificing flexibility.

The Hawaii Framework also provides various Spring Boot Starters to automatically include the
needed dependencies and trigger the auto configuration of the Hawaii production-ready features.

But it is important to mention that most of the Hawaii features can also used without using Spring
Boot. In that case the desired features need to be configured manually by defining the appropriate
Spring beans inside the application’s context.

https://qnh.eu
http://projects.spring.io/spring-boot

Chapter 2. Getting Started with Hawaii

TODO.

Chapter 3. Hawaii Features

TODO.

3.1. Environments

TODO.

3.2. Configuration properties

TODO.

3.3. Logging

TODO.

3.4. Hawaii Time

HawaiiTime is not merely a convenient wrapper to instantiate new java.time date and time objects. It
provides an application wide java.time.Clock reference which is particular useful for unit testing.

It is similar to Joda’s DateTimeUtils which also allows setting a fixed current time. However it is
important to note that Joda’s DateTimeUtils uses a static variable to store the current time.
HawaiiTime does not take this approach. Instead the HawaiiTime bean needs to be injected in any class
that needs to instantiate new date and time objects. This approach is more flexible and e.g. has the
benefit that unit tests can be run in parallel. See example usage below.

public class MyClass {
private HawaiiTime hawaiiTime;

public MyClass(HawaiiTime hawaiiTime) { @
this.hawaiiTime = hawaiiTime;

}

public void doSomethingWithDate() {
ZonedDateTime dateTime = this.hawaiiTime.zonedDateTime(); @
/] ...

public class MyClassTests {

@Test

public void testDoSomethingWithDate() {
long millis = System.currentTimeMillis();
HawaiiTime hawaiiTime = new HawaiiTime();
hawaiiTime.useFixedClock(millis); ®
MyClass myClass = new MyClass(hawaiiTime);
myClass.doSomethingWithDate();
/] ...

@ Inject the HawaiiTime bean.
@ Use the injected HawaiiTime bean to instantiate new date and time objects.

® In unit tests a fixed clock can be used to manipulate and predict the exact current time.

Another benefit of using HawaiiTime is that a fixed time can be used in a running application to test
how it behaves on a given date or time.

' Third-party libraries being used by the application do not use HawaiiTime and
— probably instantiate date and time objects based on the System time.

Hawaii uses UTC as default timezone but this can be changed by setting the hawaii.time.timezone
configuration property. The provided value will be parsed by java.time.ZoneId#of(String zoneld)
and supports different timezone formats like UTC, Europe/Amsterdam and GMT+1.

The creation of the HawaiiTime bean can also be disabled by setting hawaii.time.enabled to false.

3.5. Validation

Hawaii’s validation mechanism can be used to validate any object. It basically validates values,
collects validation errors and stores them in a validation result. These validation errors are simple

field / error code combinations.

Hawaii’s Validator is inspired on Spring’s org.springframework.validation.Validator mechanism.
However Hawaii’s validator mechanism uses it’s own ValidationResult instead of Spring’s
org.springframework.validation.Errors. The main difference is that Hawaii’s ValidationResult does
not bind directly the object being validated. This also gives the possibility to add errors for specific
keys that are not direct properties of the object being validated.

Hawaii’s validation mechanism also provides additional sugar like Hamcrest matcher support to
write human readable validating code, the capability to validate and automatically throw a
ValidationException in case of errors etc.

Like Spring’s validation mechanism the Hawaii validation mechanism also supports the notion of
nested error paths which also stimulates to re-use validators.

Let’s take an example. Imagine a Customer object with common name, e-mail, and address fields. A
validation result could for example contain the following field / error code combinations:

first_name = required ®

last_name = max_length_exceeded

email = invalid

addresses = primary_address_required @
addresses[0].type = invalid ®
addresses[0].street_name = max_length_exceeded
addresses[@].postal_code = invalid
addresses[0].city = max_length_exceeded
addresses[@].country_code = required

@ The field first_name has an required error code.

@ The field adresses (an array in this case) has primary_address_required error code.

® The field type of the first address in the addresses array has a invalid error code.

The example demonstrates simple field errors (like first_name) but also storing errors for arrays

and nested paths (addresses[0].type). In theory a field could also have multiple error codes if
needed.

Implementors should typically only implement the
org.hawaiiframework.sample.validator.Validator#ivalidate(Object, ValidationResult) method as the
other methods in the interface are already implemented using the interface’s default methods.

A generic EmailValidator would look like:

import org.hawaiiframework.validation.ValidationResult;
import org.hawaiiframework.validation.Validator;
import org.springframework.stereotype.Component;

import java.util.regex.Pattern;

@Component
public class EmailValidator implements Validator<String> { @

public static final String EMAIL_PATTERN = "A[_A-7Za-z0-9-\\+]+(\\.[_A-Za-z0-9-
1+)*@[A-Za-20-9-]+(\\.[A-Za-z0-9]+)*(\\.[A-Za-2]{2,})$";

private Pattern pattern;

public EmailValidator() {
this.pattern = Pattern.compile(EMAIL_PATTERN);

}

@0verride
public void validate(String email, ValidationResult validationResult) { @
if (!pattern.matcher(email).matches()) {
validationResult.rejectValue("invalid"); ®

}

@ Implement the Validator (in this case a String).
@ Override the Validator#validate(Object, ValidationResult) method.
® In case the e-mail is invalid, reject the value with error code invalid and store it in the

validation result.

The CustomerValidator would look like:

import org.apache.commons.lang3.StringUtils;

import org.hawaiiframework.sample.validator.EmailValidator;
import org.hawaiiframework.validation.ValidationResult;
import org.hawaiiframework.validation.Validator;

import org.springframework.stereotype.Component;

import java.util.list;
import static org.hamcrest.Matchers.greaterThan;

@Component
public class CustomerInputValidator implements Validator<CustomerInput> { @

private final EmailValidator emailValidator;
private final AddressValidator addressValidator;

public CustomerInputValidator(final EmailValidator emailValidator,
final AddressValidator addressValidator) { @
this.emailValidator = emailValidator;
this.addressValidator = addressValidator;

}

@0verride
public void validate(CustomerInput customer, ValidationResult validationResult) {

// first name validation
String firstName = customer.getFirstName();
if (StringUtils.isBlank(firstName)) {
validationResult.rejectValue("first_name", "required");
} else {
validationResult.rejectValueIf(firstName.length(), greaterThan(25),
"first_name",
"max_length_exceeded");

}

// last name validation
String lastName = customer.getLastName();
if (StringUtils.isBlank(lastName)) {
validationResult.rejectValue("last_name", "required");
} else {
validationResult.rejectValueIf(lastName.length(), greaterThan(25),
"last_name",
"max_length_exceeded");

}

// e-mail validation

String email = customer.getEmail();

if (StringUtils.isBlank(email)) {
validationResult.rejectValue("email", "required");

} else if (email.length() > 100) {
validationResult.rejectValue("email", "max_length_exceeded");

} else {
validationResult.pushNestedPath("email");
emailValidator.validate(email, validationResult);
validationResult.popNestedPath();

}

// adresses validation
List<Address> addresses = customer.getAddresses();
if (addresses == null || addresses.size() == 0) {
validationResult.rejectValue("addresses", "required");
} else {
// addresses array validations
long primaries = addresses.stream()
.filter(address -> address.getType() == AddressType.PRIMARY)
.count();

if (primaries == 0) {
validationResult.rejectValue("addresses", "primary_address_required");
} else if (primaries > 1) {
validationResult.rejectValue("addresses",
"only_1_primary_address_allowed");

}

if (addresses.size() > 3) {
validationResult.rejectValue("addresses",
"max_array_length_exceeded");

}

// address validations

for (int i = @; 1 < addresses.size(); i++) {
validationResult.pushNestedPath("addresses", i);
addressValidator.validate(addresses.get(i), validationResult);
validationResult.popNestedPath();

@ Implement the Validator (in this case a Customer).
@ Inject other validators (EmailValidator, AddressValidator) to be re-used.

® Override the Validator#tvalidate(Object, ValidationResult) method.

3.6. Web

3.6.1. Global Exception Handler

TODO.

3.6.2. REST Representations

TODO.

Input Converter

TODO.

Resource Assembler

TODO.

Chapter 4. Hawalii Starters

TODO.

4.1. hawaii-starter

TODO.

4.2. hawaii-starter-rest

TODO.

4.3. hawaii-starter-test

TODO.

4.4. hawaii-starter-async

The asynchronous request execution in Hawaii is built on top of the scheduling in Spring
Framework, see the Spring documentation for a baseline explanation.

There are two main additions:

* More flexibility in executor configuration

e Task timeout

4.4.1. Executor configuration

The Hawaii async configuration allows the definition of executors. An executor can be viewed as a
thread pool. An executor configuration looks something like this:

executors:

name: default
corePoolSize: 10
keepAliveTime: 60
maxPendingRequests: 60
maxPoolSize: 60

The lowest level of configuration is a task. Tasks are grouped into systems. A system could be some
backend system against which requests are executed, or a database on which queries are executed.
Each request or query represents a task in Hawail async terminology. System and task
configuration looks like this:

10

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#scheduling-annotation-support

systems:

name: mySystem
defaultExecutor: myExecutor
defaultTimeout: 3

tasks:

method: myTask
executor: mySpecialExecutor
timeout: 1

method: myOtherTask

As can be seen, an executor can be assigned on system level. This will be the default executor for all
the tasks in the system, unless a specific executor is configured for a task, such as myTask in the
example. The same mechanism applies to the timeout settings. It is therefore perfectly legal to
configure a task without any properties. However, it remains necessary to define the task in the
configuration, otherwise it can’t be used, i.e. every task must be defined in the configuration.

Finally, there are some global properties:

defaultExecutor: default
defaultTimeout: 10
asyncTimeoutExecutorPoolSize: 10

These define the default executor and timeout. These defaults will be used if no executor or timeout
is defined on either task or system.

The asyncTimeoutExecutorPoolSize property defines the number of threads that are used to run
timeout tasks. See task timeout.

4.4.2. Task timeout

Another addition is automatically timing out tasks. For each task that is executed, the Hawaii async
framework enqueues a cancellation task into a separate executor. If the timeout moment arrives,
the timeout task is executed and will attempt to abort the actual task being executed. The actual
task will remove the timeout task when it finishes, so if a task runs within its time limit, the timeout
task will never be run.

4.4.3. Usage

In practice, using the Hawaii asynchronous framework is not that different from using Spring’s:
asynchronous execution must be enabled with @EnableAsync and methods that are to be executed
asynchronously must be annotated with the @Async annotation, and they must have a Future typed
return value.

Additionally, an asynchronous configuration must be defined in the file identified by the

11

hawaii.async.configuration property, which is set to ./config/async-config.yml by default.

The essential difference in usage is that where Spring allows the specification of an executor by
specifying the value of the @Async annotation, the Hawaii additions allow specifying the Task name
instead of the executor. The Hawaii async configuration will take care of routing the execution to
the correct Executor.

4.4.4. Components

The following diagram shows the various components in the Hawaii async solution:

Executor ThreadFPool

xRS
yed
< invokes
async-config
reads AsyncExecutorConfig creates Executor Thread
Delegate
%,?%
0’4-‘;‘ freams
Asyne
Delayed
MethodX =] scheduled in Guard
Executor
5
qé rermoves
& &
e:ﬂ-
o timeout
£ MethodX Shared Task
AsvncExecutmnImerceptor| creates Proxy
A finish
Legend C’Q}
................................. i
¥ ! %
! invokes !
: e aborts
i i
i Hawaii Code !
i i Caller Runnable
i Spring Code :
; i
]
i Application Code i
i i
i !

In the diagram, MethodX is the call that must be executed asynchronously, for example service or
repository method. The @Async annotation causes Spring to create a proxy around this method. The
proxy locates the executor, which in the Hawaii case is a DelegatingExecutor which will delegate to
the real executor specified for the task. The executor takes the MethodX Runnable and executes it on
an available thread.

Additionally, a delayed (by the configured timeout) task, the MethodX Guard is created and passed to
the Delayed Guard Executor.

Both tasks share the Shared Task Context which allows them to share logging context, and which
also provides access for the guarded task to remove the guard task upon completion, and for the
guard task to abort the guarded task upon activation.

12

4.4.5. Processing

The sequence below shows the components working together to execute a task.

[s [e] (oot | [Smmcomtion |
[
e
= e
new ont, s) [Semaconen_|
)
1
o
-
i
,,,,,,,,,,,,,,,, - ‘
(oo
0
,,,,,, 0
)
e—1
‘‘‘‘‘‘ o |
| eme 1
amomg
[| [commanoranrs | [oior | [commmernrs | [Femisvica] [E] [oveuooeca | [amdmomagea | [0 [romrmsoneranr | g 1] 1] T T 5 ‘MO !

The sequence below shows the flow when a task times out.

13

Repostory

Er i e

The
This allows looking up specic executors for specic asks.

orit

Each task must

repoget user

fdExecutor(repogel user ')

GuargTaskexecutor | [SharedTaskContextolder

Service Completatieruure | [Repostory

14

[Fossnnn | [Fog] |

m —
o)
(TR
e guart
oo
quare >
n
femoven
enauaue aborabiTaskRunmatie
Compltaberuure_] <1
ﬁ\teaor»
oo
0010
setvse)
snwedconent= gy
went.) , [Avonsaeny
UT——
smeont
[
movetas)
yimme:mmwmwm ,
[
abortasc)
imote()
sebored)
]
J—
ish) s notramoves. %)
et
Excoption
Excepton
[Gatabke] [AporabeTaskecoretor I [I I I et guardzn

Chapter 5. Deployment

TODO.

15

Appendices

Appendix A: Hawaii application properties

Various properties can be specified inside your application.properties/application.yml file or as
command line switches. This section provides a list of available Hawaii application properties.

HAWAII PROPERTIES

#

This sample file is provided as a guideline. Do NOT copy it in its
entirety to your own application. AAA

HAWAII SPRING BOOT DEFAULTS
spring:
jackson:
date-format: com.fasterxml.jackson.databind.util.IS08601DateFormat
property-naming-strategy: CAMEL_CASE_TO_LOWER_CASE_WITH_UNDERSCORES
serialization:
indent-output: false
write-dates-as-timestamps: false
write-date-timestamps-as-nanoseconds: false
logging:
file: log/hawaii.log
level:
org.hawaiiframework: INFO
org.springframework: INFO

HAWAII TIME
hawaii:
time:
enabled: true # Enable creation of the ‘HawaiiTime‘ bean.
timezone: UTC # The timezone to use like ‘UTC', ‘Europe/Amsterdam’ or ‘GMT+1".
async:
configuration: ./config/async-config.yml # location of the Hawaii async
configuration file

spring:
profiles: dev
jackson:
serialization.indent-output: true
logging:
level:
org.hawaiiframework: DEBUG

16

spring:

profiles:

spring:
profiles

test

: prod

17

	Hawaii Framework Reference Documentation
	Table of Contents
	Chapter 1. Introduction to Hawaii
	1.1. Spring Boot

	Chapter 2. Getting Started with Hawaii
	Chapter 3. Hawaii Features
	3.1. Environments
	3.2. Configuration properties
	3.3. Logging
	3.4. Hawaii Time
	3.5. Validation
	3.6. Web
	3.6.1. Global Exception Handler
	3.6.2. REST Representations

	Chapter 4. Hawaii Starters
	4.1. hawaii-starter
	4.2. hawaii-starter-rest
	4.3. hawaii-starter-test
	4.4. hawaii-starter-async
	4.4.1. Executor configuration
	4.4.2. Task timeout
	4.4.3. Usage
	4.4.4. Components
	4.4.5. Processing

	Chapter 5. Deployment
	Appendices
	Appendix A: Hawaii application properties

